expoente caraterístico - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

expoente caraterístico - перевод на русский

OPERAÇÃO MATEMÁTICA
Expoente; Potenciação; Exponencial; Expoentes
  • Gráfico da função exponencial (base 2).

expoente caraterístico      
характеристический показатель
exponencial         
- (матем.) показательный, экспоненциальный; {f} (матем.) экспонента, показательная функция
expoente         
мат. показатель (степени), постоянная, константа

Определение

Exponencial
adj. Mathem.
Que tem como expoente uma quantidade variável ou desconhecida.
f.
Quantidade exponencial.
(De exponente)

Википедия

Exponenciação

Exponenciação ou potenciação é uma operação matemática, escrita como an, envolvendo dois números: a base a e o expoente n. Quando n é um número natural maior do que 1, a potência an indica a multiplicação da base a por ela mesma tantas vezes quanto indicar o expoente n, isto é,

da mesma forma que a multiplicação de n por a pode ser vista como uma soma de n parcelas iguais a a, ou seja, O expoente geralmente é indicado à direita da base, aparecendo sobrescrito ou separado da base por um circunflexo. Pode-se ler an como a elevado à n-ésima potência, ou simplesmente a elevado a n. Alguns expoentes possuem nomes específicos, por exemplo, a2 costuma ser lido como a elevado ao quadrado , a3 como a elevado ao cubo e a4 como a elevado a quarta potência. Assim sucessivamente.

A potência an também pode ser definida quando n é um inteiro negativo, desde que a seja diferente de zero. Não existe uma extensão natural para todos os valores reais de a e n, apesar de que quando a base é um número real positivo é possível definir an para todo número real n, e até mesmo para números complexos através da função exponencial ez. As funções trigonométricas podem ser representadas em termos da exponenciação complexa.

Na resolução de sistemas de equações diferenciais lineares utiliza-se um tipo de exponenciação em que os expoentes são matrizes.

A potenciação também é usada em várias outras áreas, incluindo economia, biologia, física e ciência da computação, com aplicações tais quais juros compostos, crescimento populacional, cinética química, comportamento de ondas e criptografia de chave pública.